G Protein 3 Gene Variant, Vascular Function, and Insulin Sensitivity in Type 2 Diabetes
نویسندگان
چکیده
A common polymorphism (825 C/T) in exon 10 of the GNB3 gene, that encodes for the -3 subunit, has been associated with different degrees of activation of heterotrimeric guanine nucleotide binding proteins (G proteins). Many hormones and neurotransmitters use specific receptors that interact noncovalently with G proteins in the transmembrane signaling process. Among them, insulin uses an inhibitory G protein–sensitive mechanism that is involved in metabolic and vascular events, leading to enhanced glucose transport and vasodilation. We hypothesized differences in peripheral and vascular insulin sensitivity according to GNB3 gene polymorphism in type 2 diabetic patients. To address this issue, we used an intervention-optimization protocol to examine whether diabetic patients with the variant show a different response in terms of insulin-sensitivity. Interindividual differences in baseline insulin sensitivity and vascular dysfunction (vasodilatory response to glyceryl trinitrate) were not attributable to this polymorphism of the GNB3 gene. However, in contrast to normal homozygotes, insulin sensitivity (SI) significantly improved (P 0.01) in carriers of the 825T variant. Parallel to these findings, stimulated C-peptide tended to decrease, and the response to glyceryl trinitrate significantly improved (P 0.004) among 825T carriers. Body mass index, systolic and diastolic blood pressure, heart rate, or serum lipid levels did not significantly change in either group. Our findings suggest an effect of GNB3 gene polymorphism on important phenotypic variations in type 2 diabetes mellitus. The GNB3 gene polymorphism might be an example of pharmacogenetics, with the underlying etiological genetic defect altering the response to treatment. (Hypertension. 2003;41:124-129.)
منابع مشابه
ارتباط پلی مورفیسم 3'UTR(1484insG) از ژن پروتئین تیروزین فسفاتاز B1 با بیماری دیابت نوع2 ، مقاومت به انسولین و چاقی در یک جمعیتی از تهران
Background and Aim: Type 2 diabetes mellitus is a heterogeneous disorder resulting from a combination of genetic and environmental factors which contribute to pathogenesis by influencing beta cell function and tissue insulin sensitivity. Protein tyrosine phosphatase 1B (PTP1B)" efficiently dephosphorylates the insulin receptor and attenuates insulin signaling. Recently, a 1484insG variant of th...
متن کاملMagnesium supplementation enhances insulin sensitivity and decreases insulin resistance in diabetic rats
Objective(s): Diabetes mellitus has been suggested to be the most common metabolic disorder associated with magnesium deficiency. This study aimed to investigate the effects and mechanisms of magnesium supplementation on insulin receptor activity in elderly type 2 diabetes using a rat model and to provide experimental evidence for insulin resistance improvement by magn...
متن کاملThe Role of Fetuin-A in Diabetes and Obesity: The Mechanism and Action
Fetuin-A is a phosphorylated glycoprotein produced by liver.It by binding to calcium ion inhibits ectopic calcium deposition and protects vascular calcification. Fetuin-A acts as a multifactorial protein and its role has been documented from brain development to bone remodeling and immune function, regulation of insulin activity, hepatocyte growth factor activity and inhibition lymphocyte blast...
متن کاملASSOCIATION ANALYSIS BETWEEN RS10830962 VARIANT OF MTNR1B GENE AND TYPE 2 DIABETES MELLITUS RISK
Background: Type 2 diabetes mellitus (T2DM) is the most common type of diabetes that was classically characterized by pancreatic β-cell dysfunction. Changes in circadian patterns is one of the reasons which can increase the occurrence of diabetes. Melatonin is one of the biological molecules which plays an important role in regulating the circadian clock and also an inhibitory effect on insulin...
متن کاملThe Effect of Eight Weeks Aerobic and Resistance Training on AMP-Activated Protein Kinase (AMPK) Gene Expression in Soleus Muscle and Insulin Resistance of STZ-Induced Diabetic Rat
Background: AMPK regulation is one of biggest target in T2D and metabolic syndrome research. Therefore, the present study is aimed to investigate The effect of 8 weeks aerobic and Resistance training on AMP-activated protein kinase (AMPK) gene expression in soleus muscle and insulin resistance of STZ-induced diabetic rat. Methods: The research method of present study was experimental. For this...
متن کامل